@ Oka group, group seminar, April, 18, 2025

Electromagnetic Responses of 3D Topological Insulators and Axion Electrodynamics in Condensed Matter Systems

Naoki Itsui

The Institute for Soild State Physics, The University of Tokyo

- This talk is based on my Bacheor Thesis at Tada group in Hiroshima University.
- ✓ My bacheor thesis written in Japanese can be found in my HP. Scan the right QR code \rightarrow .

Outline

This talk consists of three parts.

Background

Electromagnetic Responses of 3D Topological Insulators

Axion Electrodynamics in Topological Materials

This talk is mainly based on two papers: Qi, Hughes, and Zhang, Phys. Rev. B, (2008) and Sekine and Nomura, J. Appl. Phys., (2021)

April 18, 2025

Outline

This talk consists of three parts.

Background

Electromagnetic Responses of 3D Topological Insulators

Axion Electrodynamics in Topological Materials

This talk is mainly based on two papers: Qi, Hughes, and Zhang, Phys. Rev. B, (2008) and Sekine and Nomura, J. Appl. Phys., (2021)

April 18, 2025

Background

 In 1950s, Ginzburg and Landau developed the standard theory for phases and phase transitions.
 → Very Successful

Xiao-Gang Wen, Rev. Mod. Phys., (2017)

- However, in 1980s, Quantum Hall Effect (QHE) was discovered as a first example of Topological Phases.
 K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., (1980)
- In 2005, Kane and Mele proposed Topological Insulators (TIs) protected by time reversal symmetry.

Bulk \rightarrow Energy Gap = like an Insulator Edge \rightarrow No Energy Gap = like a Metal

C. L. Kane and E. J. Mele, Phys. Rev. Lett., (2005)

C. L. Kane and E. J. Mele, Phys. Rev. Lett., (2005)

Oka group

Background

 In 2006 and 2007, Fu, Kane and Mele developed a basic theory of topological insulators including the topological band theory and 3D topological Insulators.

> Liang Fu and C. L. Kane, *Phys. Rev. B*, (2006) Liang Fu and C. L. Kane, *Phys. Rev. B*, (2007) Liang Fu, C. L. Kane, and E. J. Mele, *Phys. Rev. Lett.*, (2007)

- In 2008, Qi, Hughes and Zhang construct a topological field theory that describe topological responses of TIs.
 → In 3D TIs, effective action is equivalent to Axion Electrodynamics.
 Qi, Hughes, and Zhang, Phys. Rev. B, (2008)
- There are some theoretical proposal that potentially realize Axion electrodynamics in materials.

Sekine and Nomura, J. Appl. Phys., (2021)

Notations

 $\mu, \nu, \rho, \sigma = 0, 1, 2, 3, \cdots$: Indices for space-time

 $i, j, k, l = 1, 2, 3, \cdots$: Indices for space

Natural units: $\hbar = c = e = 1$ (restored when necessary)

Minkowski metric: $\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1, \cdots)$

 $\alpha,\beta=1,2,3,\cdots$: Band Indices

Outline

This talk consists of three parts.

Background

Electromagnetic Responses of 3D Topological Insulators

Axion Electrodynamics in Topological Materials

This talk is mainly based on two papers: <u>Qi, Hughes, and Zhang, Phys. Rev. B, (2008)</u> and <u>Sekine and Nomura, J. Appl. Phys., (2021)</u>

April 18, 2025

Electromagnetic Responses of 3D TIs

- 1. Quantum Hall Effect and Chern-Simons gauge theories
- 2. Effective Action of 3D Topological Insulators
- 3. Topological Electromagnetic Response
 - 3.1. Surface Half-integer Quantum Hall Effect3.2. Topological Magnetoelectric Effect

QHE and Chern-Simons gauge theories

First, we consider the effecvie action of QHE

$$S_{\rm CS}^{(2+1)} = \frac{Ch_1}{4\pi} \int d^2x dt \ \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}$$

 $Ch_1 = \frac{1}{4\pi} \int d^2k \ \epsilon^{ij} \operatorname{Tr}[f_{ij}]$ is the first Chern number

 A_{μ} is the U(1) gauge field f_{ij} is the Berry curvature

Topological Response (= Hall current) can be calculated as

$$j^{\mu} = \frac{\delta S_{\rm CS}^{(2+1)}}{\delta A_{\mu}} = \frac{Ch_1}{2\pi} \epsilon^{\mu\nu\rho} \partial_{\nu} A_{\rho} = \sigma_{\rm H} \epsilon^{\mu\nu\rho} \partial_{\nu} A_{\rho}$$

QHE and Chern-Simons gauge theories

Next, we consider the 4D generalized QHE

Zhang and Hu, Science, (2001) Bernevig et. al., Ann. Phys., (2002)

- Chern-Simons gauge theory can be defined in odddimenstion space-time.
- (2+1)-d QHE can be generalized to (4+1)-d.
- 4D QHE is time reversal invariant.

QHE and Chern-Simons gauge theories

The effecvie action of the 4D generalized QHE:

$$S_{\rm CS}^{4+1} = \frac{Ch_2}{24\pi^2} \int d^4x dt \ \epsilon^{\mu\nu\rho\sigma\tau} A_\mu \partial_\nu A_\rho \partial_\sigma A_\tau$$

$$Ch_{2} = \frac{1}{32\pi^{2}} \int d^{4}k \ \epsilon^{ijkl} \operatorname{Tr} \left[f_{ij} f_{kl} \right] \quad : \text{Second Chern number}$$
$$f_{ij}^{\alpha\beta} = \partial_{k_{i}} a_{j}^{\alpha\beta} - \partial_{k_{j}} a_{i}^{\alpha\beta} + i [a_{i}, a_{j}]^{\alpha\beta} : \text{Berry curvature}$$
$$a_{i}^{\alpha\beta} = -i \left\langle u_{\alpha, \mathbf{k}} | \partial_{k_{i}} | u_{\beta, \mathbf{k}} \right\rangle \qquad : \text{Berry connection}$$

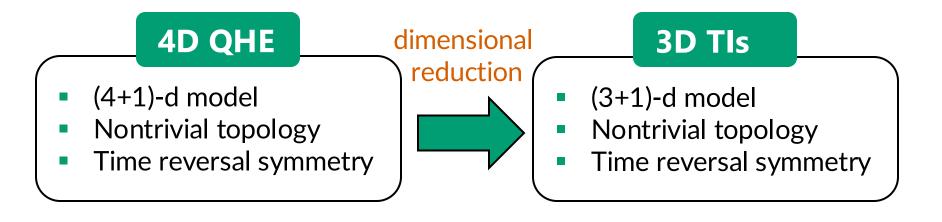
Topological Response (= Hall current) can be calculated as

$$j^{\mu} = \frac{\delta S_{\rm CS}^{(4+1)}}{\delta A_{\mu}} = \frac{Ch_2}{8\pi^2} \epsilon^{\mu\nu\rho\sigma\tau} \partial_{\nu} A_{\rho} \partial_{\sigma} A_{\tau}$$

April 18, 2025

Oka group

 Here, we derive the effective action of 3D TIs by dimensional reduction.

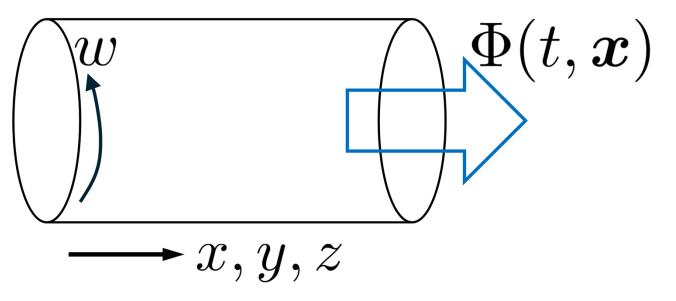


Effective action \rightarrow (4+1)-d Chern-Siomons gauge theory Effective action \rightarrow ???

We consider the 4D QHE on generalized cylinder.

Gauge field configurations: $A_{\mu} = (A_0, A_1, A_2, A_3, \Phi(t, \boldsymbol{x})/L_w)$, which do not depend on the *w* direction.

Integrate action out with respect to w direction and $L_w
ightarrow 0$



Effective action of 4D QHE can be calculated as

$$S_{\rm CS}^{4+1} = \frac{Ch_2}{24\pi^2} \int d^4x dt \ \epsilon^{\mu\nu\rho\sigma\tau} A_{\mu} \partial_{\nu} A_{\rho} \partial_{\sigma} A_{\tau}$$
$$= \frac{1}{8\pi^2} \int d^3x dt \ \theta(t, \boldsymbol{x}) \epsilon^{\mu\nu\rho\sigma} \partial_{\mu} A_{\nu} \partial_{\rho} A_{\sigma}.$$

We define the theta field or Axion field as

$$\theta(t, \boldsymbol{x}) = Ch_2 \Phi(t, \boldsymbol{x}) = -\frac{1}{4\pi} \int d^3k \ \epsilon^{ijk} \operatorname{Tr} \left[a_i \partial_j a_k + \frac{2}{3} i a_i a_j a_k \right].$$

Time reversal symmetry constraint quantizes Axion field.

$$\theta(t, \boldsymbol{x}) = 0, \pi \pmod{2\pi}$$

✓
$$\theta = 0$$
 → Trivial Insulators.
✓ $\theta = \pi$ → Strong Topological Insulators.

Therefore, effective action of 3D TIs are given by

$$S_{3D} = \frac{e^2}{8\pi^2 \hbar c} \int d^3 x dt \ \theta(t, \boldsymbol{x}) \epsilon^{\mu\nu\rho\sigma} \partial_\mu A_\nu \partial_\rho A_\sigma$$
$$= \frac{e^2}{4\pi \hbar c} \int d^3 x dt \ \boldsymbol{E}(t, \boldsymbol{x}) \cdot \boldsymbol{B}(t, \boldsymbol{x}).$$
Qi, Hughes, and Zhang, Phys. Rev. B, (2008)

April 18, 2025

• Now we have two kinds of strong \mathbb{Z}_2 topological invariants.

 $\theta(t, \boldsymbol{x}) = 0, \pi \pmod{2\pi}$ From Topological field theory $(-1)^{\nu_0} = \prod_{n_1, n_2, n_3 = 0, 1} \delta(\Lambda_{i=(n_1 n_2 n_3)})$ From Topological band theory

These strong \mathbb{Z}_2 topological invariants are equivalent!!!.

Wang, Qi, and Zhang, New J. Phys., (2010)

 ν_0 : Can be easily computed θ : Directly observable in response coefficients

Surface Half-integer Quantum Hall Effect

- We consider the situation where z < 0 is the topological insulator and z > 0 is the trivial vaccum.
- Axion field: $\partial_z \theta(t, \boldsymbol{x}) = \pi \delta(z)$
- Effective action at surface: $S_{\text{surface}} = \frac{1}{8\pi} \int dx dy dt \ \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}$

Then, the current at surface z = 0 is

$$j^{\mu} = \frac{\delta S_{\text{surface}}}{\delta A_{\mu}} = \frac{1}{2} \frac{e^2}{h} \epsilon^{\mu\nu\rho} \partial_{\nu} A_{\rho}$$

$$\begin{array}{l} \textbf{Topological}\\ \textbf{Insulators}\\ \theta=\pi \end{array} \quad \begin{array}{l} \textbf{Trivial}\\ \textbf{Vacuum}\\ \theta=0 \end{array}$$

z < 0 z > 0

Half quantized Hall conductance!!!

April 18, 2025

Surface Half-integer Quantum Hall Effect

- Physically, the surface half-integer quantum Hall effect originates from a single Dirac cone at surface.
- Consider the effective Hamiltonian of 3D TIs at surface with magnetic impurities. <u>Zhang, et al., Nat. Phys., (2009)</u>

$$H_{\text{surface}}(k_x, k_y) = \hbar v_{\text{F}}(k_y \sigma_x - k_x \sigma_y) + \boldsymbol{m} \cdot \boldsymbol{\sigma}$$

H)

Topological Magnetoelectric Effect

• Total effective actions in 3D TIs are

$$S_{\text{tot}} = S_{\text{Maxwell}} + S_{3D}$$

= $\int d^4x \left[-\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} F_{\mu\nu} \mathcal{P}^{\mu\nu} - \frac{1}{c} j^{\mu} A_{\mu} \right]$
+ $\frac{e^2}{8\pi^2 \hbar c} \int d^3x dt \ \theta(t, \mathbf{x}) \epsilon^{\mu\nu\rho\sigma} \partial_{\mu} A_{\nu} \partial_{\rho} A_{\sigma}$

 $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$: Field strength tensor

 $\mathcal{P}^{0i} = P_i, \mathcal{P}^{ij} = \epsilon^{ijk} M_k$: Electric polarization, Magnetization

> Equation of motion
$$\Box$$
 $\frac{\delta S_{\text{tot}}}{\delta A_{\mu}} = 0$

Topological Magnetoelectric Effect

• We derive the Modified Maxwell Equations in 3D TIs.

$$\nabla \cdot \boldsymbol{D} = 4\pi\rho$$

$$\nabla \times \boldsymbol{H} - \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t} = \frac{4\pi}{c} \boldsymbol{j} \quad \alpha : \text{Fine structure constant}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

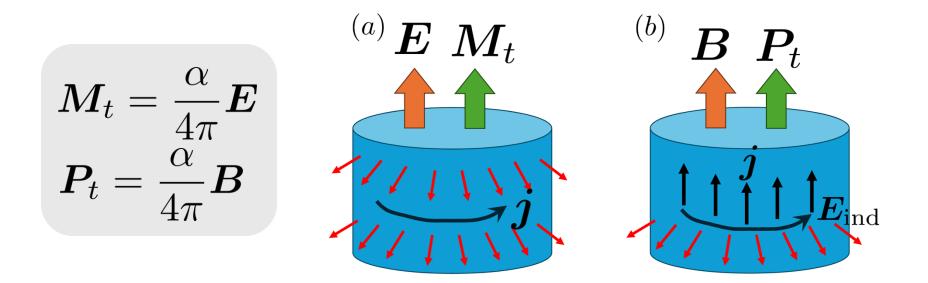
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\boldsymbol{D} = \boldsymbol{E} + 4\pi\boldsymbol{P} + \frac{\alpha}{\pi}\theta\boldsymbol{B} = \epsilon\boldsymbol{E} + \frac{\alpha}{\pi}\theta\boldsymbol{B}$$

$$\boldsymbol{H} = \boldsymbol{B} - 4\pi\boldsymbol{M} + \frac{\alpha}{\pi}\theta\boldsymbol{E} = \frac{\boldsymbol{B}}{\mu} + \frac{\alpha}{\pi}\theta\boldsymbol{E}$$

Topological Magnetoelectric Effect

 Physically, the topological magnetoelectric effect originates from a surface half quantized hall current.



Outline

This talk consists of three parts.

Background

Electromagnetic Responses of 3D Topological Insulators

Axion Electrodynamics in Topological Materials

This talk is mainly based on two papers: Qi, Hughes, and Zhang, Phys. Rev. B, (2008) and Sekine and Nomura, J. Appl. Phys., (2021)

April 18, 2025

Axion Electrodynamics in Topological Materials

- 1. Chiral Anomaly
- 2. Derivation of Effective Action of 3D TIs
- 3. Dynamical Axion Fields
- 4. Weyl Semimetals

Axion Electrodynamics in Topological Materials

• The action for Axion electrodynamics

$$S_{\theta} = \frac{e^2}{8\pi^2} \int d^3x dt \ \theta(t, \boldsymbol{x}) \epsilon^{\mu\nu\rho\sigma} \partial_{\mu} A_{\nu} \partial_{\rho} A_{\sigma}$$
$$= \frac{e^2}{32\pi^2} \int d^3x dt \ \theta(t, \boldsymbol{x}) \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

• Actually, S_{θ} originates from the chiral anomaly in (3+1)-d.

First, we review the chiral anomaly.

Chiral Anomaly

• The action for Dirac field in (3+1)-d with U(1) gauge fields

$$S[\bar{\psi},\psi,A_{\mu}] = \int d^4x \ \bar{\psi}[i\gamma^{\mu}D_{\mu} - m]\psi$$

 $D_{\mu} = \partial_{\mu} - ieA_{\mu}$: Covariant derivative

Chira transformation:
$$\psi \to \psi' = e^{i\alpha\gamma^5}\psi$$

 $\bar{\psi} \to \bar{\psi}' = \bar{\psi}e^{i\alpha\gamma^5}$

• In m = 0, the action has chiral symmetry

$$S\left[\bar{\psi},\psi,A_{\mu}\right] = S\left[\bar{\psi}',\psi',A_{\mu}\right]$$

Chiral Anomaly

• In quantum mechanics, we require that the partition function is invariant under the chrial transformation.

$$Z = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{iS\left[\bar{\psi},\psi,A_{\mu}\right]} = \int \mathcal{D}\bar{\psi}'\mathcal{D}\psi' \ e^{iS\left[\bar{\psi}',\psi',A_{\mu}\right]}$$

- The integral measure transforms as $\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = J(\alpha)\mathcal{D}\bar{\psi}\mathcal{D}\psi$ $J(\alpha)$: Jacobian under the chiral transformation
- Therefore, the action transforms as (Chiral) Anomaly!!!

$$Z = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{iS[\bar{\psi},\psi,A_{\mu}]} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{iS[\bar{\psi},\psi,A_{\mu}] + \log J(\alpha)} = iS(\alpha)$$

Chiral Anomaly

• In (3+1)-d, the chiral anomaly can be computed as

$$S(\alpha) = -i \log J(\alpha) = -\frac{e^2}{16\pi^2} \int d^3x dt \ \alpha \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}.$$

- This method for computing anomalies is called
 Fujikawa's method.
 Fujikawa, Phys. Rev. Lett., (1979)
 Fujikawa, Phys. Rev. D, 21, (1980)
- Recently, there has been significant progress in the study of anomalies, but I cannot understand all the key concepts.

Derivation of Effective Action of 3D TIs

- By computing the chiral anomaly, we derive the effective action of 3D TIs.
- The effective Hamiltonian for 3D TIs Zhang, et al., Nat. Phys., (2009)

$$H(\mathbf{k}) = k_x \alpha^1 + k_y \alpha^2 + k_z \alpha^3 + m\alpha^4$$

Clifford algebra: $\{\alpha^a, \alpha^b\} = 2\delta^{ab}$ $m > 0 \rightarrow \text{Topological Insulators}$ $m < 0 \rightarrow \text{Trivial Insulators}$

• The action for 3D trivial insulators

$$S[\bar{\psi},\psi,A_{\mu}] = \int d^4x \ \bar{\psi}[i\gamma^{\mu}D_{\mu} + m]\psi, \ \gamma^i = \alpha^0 \alpha^i.$$

Derivation of Effective Action of 3D TIs

• On the other hand, the action for 3D TIs

$$S[\bar{\psi},\psi,A_{\mu}] = \int d^4x \ \bar{\psi}[i\gamma^{\mu}D_{\mu}] \psi, \ \gamma^i = \alpha^0 \alpha^i.$$

- These two action can be continuously $\psi \to \psi' = e^{-i\pi\gamma^5/2}\psi$ connected to the chiral transformation. $\bar{\psi} \to \bar{\psi}' = \bar{\psi}e^{-i\pi\gamma^5/2}$
- Therefore, the effective action from the chiral anomaly

$$S\left(-\frac{\pi}{2}\right) = S_{\theta} = \frac{e^2}{32\pi^2} \int d^3x dt \ \theta \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}, \ \theta = \pi$$

Axion term!!!

Dynamical Axion Fields

- \checkmark The Axion field of 3D TIs is quantized to $\pi.$
- ✓ If a system has either time reversal or spatial invarsion symmetry, the Axion field is quantized to 0 or π .
- Let us consider the following effective Hamiltonian

$$H(\mathbf{k}) = k_x \alpha^1 + k_y \alpha^2 + k_z \alpha^3 + m\alpha^4 + m'\alpha^5, \ \alpha^5 = \alpha^1 \alpha^2 \alpha^3 \alpha^4.$$

 $T^{-1}H(k)T \neq H(-k) \rightarrow No \text{ time reversal symmetry}$ $P^{-1}H(k)P \neq H(-k) \rightarrow No \text{ spatial inversion symmetry}$

Fujikawa's
$$\theta = \frac{\pi}{2}(1 + \operatorname{sgn}(m)) - \arctan \frac{m'}{m}$$
 Takes any values!!!

Dynamical Axion Fields

 In a lattice system, Antiferromagnetic 3D TIs can realize this Axion field with space-time dependence.

> <u>Sekine and Nomura, J. Phys. Soc. Jpn., (2014)</u> <u>Sekine and Nomura, Phys. Rev. Lett., (2016)</u>

 Remember the modified Maxwell equations

 $\left(\boldsymbol{j} = c \nabla \times \boldsymbol{M} + \frac{\partial \boldsymbol{P}}{\partial t} \right)$

$$\nabla \times \boldsymbol{H} - \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t} = \frac{4\pi}{c} \boldsymbol{j}$$
$$\boldsymbol{D} = \boldsymbol{E} + 4\pi \boldsymbol{P} + \frac{\alpha}{\pi} \theta \boldsymbol{B} = \epsilon \boldsymbol{E} + \frac{\alpha}{\pi} \theta \boldsymbol{B}$$
$$\boldsymbol{H} = \boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \theta \boldsymbol{E} = \frac{\boldsymbol{B}}{\mu} + \frac{\alpha}{\pi} \theta \boldsymbol{E}$$

 $\checkmark P$ and M can be interpreted as an electric current.

April 18, 2025

Oka group

Dynamical Axion Fields

• An electric current originates from the Axion field

$$\boldsymbol{j} = \boldsymbol{j}_{\text{AHE}} + \boldsymbol{j}_{\text{CME}} = \frac{e^2}{2\pi h} \left[\nabla \theta(t, \boldsymbol{x}) \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \theta(t, \boldsymbol{x})}{\partial t} \boldsymbol{B} \right]$$

$$\boldsymbol{j}_{\mathrm{AHE}} = rac{e^2}{2\pi h} \nabla \theta(t, \boldsymbol{x}) \times \boldsymbol{E}$$
: Anomolus Hall Effect
 $\boldsymbol{j}_{\mathrm{CME}} = rac{e^2}{2\pi h} rac{1}{c} rac{\partial \theta(t, \boldsymbol{x})}{\partial t} \boldsymbol{B}$: Chiral Magnetic Effect

• Surface half quantized hall currents correspond to $j_{
m AHE}$.

Weyl Semimetals

• Weyl semimetals as an example of dynamical Axion fields

$$H(\boldsymbol{k}) = \boldsymbol{k} \cdot \left(\tau^3 \otimes \boldsymbol{\sigma}\right) + \boldsymbol{b} \cdot \left(I \otimes \boldsymbol{\sigma}\right) - \mu_5 \left(\tau^3 \otimes I\right)$$

The action for Weyl semimetals

$$S = \int d^4x \; \bar{\psi} i \gamma^{\mu} \big[\partial_{\mu} - i e A_{\mu} - i b_{\mu} \gamma^5 \big] \psi$$

$$b_{\mu} = (\mu_5, -b)$$
: Chiral gauge field

2b
$2\mu_5$

Weyl Semimetals

• By applying Fujikawa's method, <u>Zyuzin and Burkov, Phys. Rev. B, (2012)</u> <u>Vazifeh and Franz, Phys. Rev. Lett., (2013)</u>

$$S_{\theta} = \frac{e^2}{32\pi^2} \int d^3x dt \ \theta(t, \boldsymbol{x}) \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}, \ \theta(t, \boldsymbol{x}) = -2b_{\mu} x^{\mu}$$

Computing the electric current, we obtain

$$oldsymbol{j}_{ ext{AHE}} = rac{e^2}{\pi h}oldsymbol{b} imes oldsymbol{E}, \ oldsymbol{j}_{ ext{CME}} = -rac{e^2}{\pi h}\mu_5oldsymbol{B}$$

• In equilibrium states, the chiral magnetic effect cannot be realized.

Vazifeh and Franz, Phys. Rev. Lett., (2013)

20

 $12\mu_5$

Conclusion

- The topological field theory that describes topological responses in 3D TIs can be obtained via dimensional reduction from the (4+1)-d Chern-Simons gauge theory.
- Topological electromagnetic responses in 3D TIs originate from a single Dirac cone at the surface.
- There are some topological materials where Axion emerge.